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Abstract

Parameter projection techniques plap ve~ impor-
tant roles in adaptive wntrol.  In this paper, two
scaled parumeter  projection techniques with respect
to nonsmooth  convex pammeter sets are developed.
The two projection techniques are then used i n
adaptive %-control problems  to derive  the adap-
tive control laws.

1 Introduction

New technological development in space engineer-
ing and science requires sophisticated control SY%
terns with both high performance and reliability.
How to achieve the required performance and reli&
bility against various uncertainties haa been a very
challenging issue for control system design in recent
years. Adaptive and robust control techniques are
considered as useful methods to achieve this goal.
Generally speaking, adaptive control is effective in
dealing with parametric uncertainty, while the r~
bust control schemes are good at handling dynamic
uncertainty. However, oftentimes, control systems
have both types of uncertainty; therefore, an inte-
grated treatment in control system design is neces-
sary.

In this paper, we consider adaptive robust control
design for an uncertain system with both paramet-
ric and dynamic uncertainties, which results in an
adaptive system with ?&-performance. As the
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?t=-performance  has a close relation with disai-
pativity,  a dissipation theoretic approach is used
in dealing with the adaptive 7&-control  problem.
Dissipation theoretic technique as a generalization
of Lyapunov method [13] for adaptive control yields
a simple adaptive control law which can signifi-
cantly reduce implementation cost. However, the
methods generally do not guarantee boundedneaa
and convergence of parameters. Though the pa-
rameter convergence is not the objective of adaptive
control, the boundedneas of the estimated param-
eter should be guaranteed in the adaptive control
law. One of the methods to guarantee the bounded-
nesa is to use the parameter projection techniques.

In applications, the unknown parameters of the pa-
rametrized systems are usually in a bounded set.
In this paper, it is assumed that allowable paranw
ter sets are compact and convex, but not necessarily
smooth, e.g., a cube in the parameter space. Dur-
ing the adaptation, one of the requirements is that
the parameter-adjustment mechanism of an adap
tive control system keep the adjusted parameters
in the parameter sets so as not to invalidate the
solvability conditions. Here, both vector anti direct
parameter projection techniques are used to achieve
this goal. The vector projection, which was origi-
nally introduced ss a gradient projection method to
generate the feasible directions in constrained opti-
mization [11], is probably the most extensively used
projection technique in adaptive parameter estima-
tion and adaptive control [4, 16, 15, 5, 7]. HOW-
ever, in these cases, the projections are considered
only for smooth sets. The vector projection is gen-
cralked  to a more general setting wwh that the
non-smooth parameter sets are allowed. The direct
parameter projection is relatively new in adaptive
cont. rol (another version appeared ill [2]). It will be
seen that this technique is sllitablc  for the adaptive

1
American  Institllte of Aeronautics ald Astrollallti(:s



control problems where integral performance spec-
ifications arc involved, in particular adaptive 7&-
control problem, The two projections not only play
a very important role in adaptive control problems,
but, also are of intereat in their own right,

This paper is a generalization of the work re-
ported in [9]. Other work related to the adap
tive ?&-control  includes [2, 23, 12, 17]. In this
paper, the emphasis is the development of gen-
eral projection techniques for nonsmooth sets and
their applications in adaptive 7&-control;  the ex-
istence of adaptive 7f~-controllers  are character-
ized in terms of solutions of parameter-dependent
Hamilton-Jacobi inequalities, and adaptive con-
trollers are constructed from the solutions and the
projection techniqu=. This paper is thus divided
into two parts. In Section 2, the general pr~
jection techniques are developed; both direct and
direct parameter projections techniques are rigor-
ously treated with respect to compact, convex, but
possibly nonsmooth parameter sets. In Section 3,
an adaptive ‘l&control  problem is stated; the solu-
tions for the adaptive 7&-control  problem are de-
rived for the case when the original storage func-
tions are independent of the parameters. Both vec-
tor and direct parameter projection techniques are
used in the derivation of adaptive control laws.

2 Parameter Projection Tech-
niques

In this section, vector and direct parameter (scaled)
projections using the techniques from nonsmooth
analysis and viability theory [1, 18]are presented.
Both projection techniques will play a very impor-
tant role in the adaptive ‘&-control  design. The
special non-scaled projection techniques were con-
sidered in [9].

2.1 Invariance and Contingent Cone

Consider a differential equation:

i = f(z, t) (1)

where ~ : Rn x R+ -+R”  is continuous in z and
[nmsurable in t. Suppose for all Z. c Rn, the differ-
outial equation has a unique solution starting from
z(O) = .~o defined for t c R+,  A set X c R“ is a
iuvariant  set of (l), if for all XO G X, its solution

will stay in the set X for all t. It is known that if
X is an invariant set, so is its closure X,

Given a compact set K c R“, we next examine
the invariance for the differential equation (1). The
invariance is characterized in terms of contingent
cones [1]. The contingent cone to K is well defined
as a set-valued map TK : K - X:

where dK(~) := infz~K Ilz – zll. For all z C K,
the value TK (z) is a closed cone. If K is convex,
then TK (z) is a tangent cone. Here, we are con-
cerned with only the convex sets,

Suppose K is convex and O E lnt(K). The
Minkowski function of K is defined es (see, e.g.,
[11])

~K(Z) = inf{~ C R+ : z G AK};

Given r ? O, we define the set K. as

Then K = K1, The Minkowski functions of convex
sets are convex, but not differentiable in general
[11]. The contingent cone to a convex set is a lower
semi-continuous set-valued map on K with closed
convex value [1]. The following lemma provides a
more explicit representation of contingent cones to
convex sets [18].

Lemma 2.1 If K is convex, then

TK(Z)={V: 3t>O:Z+tVC K}.

Another useful notion related to a convex set is
its normal cone. If K c Rn is convex, then we can
define its normal cone as follows:

Therefore, ~K(Z) = {O} if z G lnt(K).

From the above characterizations, we give the fol-
lowing propositions.

Proposition 2.2 Consider a linear invertible map
Q : Rn~Rn. Suppose K is a convex compact set
in R“, x E K; let M = QK which is also con-
vez compact, and y = Qx.  Then the Minkowski
junctions, contingent cones, and nolmai  cones sat-
isfy ~M(~) =  WK(X), TM(Y)  =  QTK(z),  a n d
NM(?~)  = Q-lNK(x).
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Proposition 2.3 Given  a conwz compact set K C
Rn, at is an invariant set of differential equation (1)
if and only if for all z G K,

f (z, t) c T~(z) (3)

jor all t c R+.

Therefore, the invariance of a set can be character-
ized by its contingent cone. Given a convex and
compact set K c Rn,  the solutions to differential
equation (1) are not necessarily always constrained
inside the set K. However, in adaptive control prob-
lems, we usually require some parameters, which
are governed by differential equations, stay inside
given sets during the evolution (see Sections 5 and
6), and some properties still remain. In the follow-
ing two subsections, we will introduce two projec-
tion methods to achieve this goal.

2.2 Direct Parameter Projection

Consider a convex and compact set K c R“. The
projection Ilg (z) of a point z G Rn onto K is de-
fined as follows:

@(~) =  arg~i.#  11~ –  
%IIQ :=

d===

(4)
The above projection is well-defined, since K C R“
is convex and compact; in addition! @(z) is con-
tinuous. We first have the following characteriza-
tions.

Proposition 2.4 Given a convez  compact set K C
R“. Take x G R“; the following statemenb  are
equivalent:

(i) < c K is such that<= I@(z);

(ii)  (z - <)~Q(zo  - f) <O.

(iii) x -<c Q-lN~(<).

Proof [(i) + (ii)] From the definition,

From Theorem 1 in [11, p.69], the above inequal-
ity holds if and only if

(Q1/2z _ @2<)~(Q1/2X  - Q’/2<) < (),

which is exactly (ii).

3

[(ii) + (iii)] From Lemma 2.1 and the definition
of normal cones (see also [18, Proposition 2G]),

Q-1/2NK(<)  = ~Quq.@/2f)

= {Q1/2vlv~Q(zo  - <) < O,VZII c K}. ( 5 )

Rom Proposition 2.2,

NQ,,,K(Q1/20  = Q+2NK(<),

Q-lJVK(O  = {vIvTQ(so  -<) < O,VZO E K } .

Therefore, (ii) holds if and only if

z -(c Q-lNK(<).

In the following, we have the following property
of the direct projection.

Proposition 2.5 Let a wnvez wmpact  set K C
R“. Then for any absolutely cmtinuow function
x : R+ R”, its  projection:

&(t) := I-@(t))

is also absolutel~  wntinuous.

Proof As Q is invertible, it is sufficient to show
that the map Q1/211~ : Rn+Rn is Lipschitz. In
fact, we will show that for all z, v E Rn,

Indeed,
Q1/2(z -~) 2

2
I-Ig(z))  –  (v -  H2(Y)) *= I’Ig(z) – I_Ig(v)  + (z –
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where the inequality follows from the above propo
sition (ii), e.g.,

(Z - H~(Z))TQ(@(I/) - II~(z))  <0.

The direct parameter projection hss the following
property which is useful in the adaptive ?&-control
problem.

Theorem 2.6 Given the wnvex and compact K.
Then for anp  absolute continuow  junction z :
R+-+Rn m“th z(O) c K, and the projection.’ f(t)=

ll~(z(t)),  the following  inegualitu holds:

J
T

(C(t)  - Z*)TQ(/(t)  - *(t))dt  <0 ( 7 )
o

for all z“ E K and T >0.

Proof Notice that the left-hand side of (7) is well
defined from the previous proposition. Thus, given
z*6Kand TzO, we have

J,=(W) - Z*)TQ(i(t) - d(t))dt

= (((t) - z(t)) TQ(t(t)  - z*) I:+

J- oT(((t) - x(t))TQK(~)

= (<(T) - Z(T))  ~Q(&(T) - z“)+

J- oT(f(t) - z(t))TQ<(t)dt

where the last equality holds as <(0) = z(O) E K.

As <(t) = IIQ(z(t))  for t c [0, T], Proposition 2.4
(iii) gives

z(t) - <(t)  E Q-lZVK(<(t)) (8)

for all t G [To, T’].

Also from Proposition 2.4 (ii), one has the following:

(W) - W’))TQ(W3  - z*)

= (z(T)  - <(T))  TQ(z*  - <(T))  s O.

Ou the other hand, if <(t) G K is differentiable at
t ~ (7”, T), there exists a positive sequence {hn }
with hn~O as n-mo such that <(t+h”) c K; denote

(in(t) :=
<(t + hn) - {(t)

h n ‘

then dn(t)~<(t)  as neoo. Since <(t)  + hnd.(t) =
<(t + hn)  G-K, d.(t) G TK(f(t))  by Lemma 2.1.
T h e r e f o r e ,  <(t) = Iimn+w dn(t) c TK(<(t))  M
TK(<(t))  is a closed  cone. Thus, (8) as well ss the
definition of normal cone implies

(((~) - dt))~Q<(t)  = -(z(t) - f(t))TQ<(t)  >0.

for all t c [To, T]. Therefore,

JoT(f(t) - Z*) TQ(<(t) - A(t))dt

= (W’)-Z(T))TQ(@’)-Z*)-
J
oT(<(t)-z(t))TQ{(t)dt  <0

In the above proof, we have also proved the fol-
lowing useful result.

Corollary 2.7 Let f : R++R” be an absolutely
wntinuow function. Give a wmpact  and wnvez
set K 6 R“; ij<(t)  E K for ant E R“, then

for almost all t c R“.

2.3 Vector Projection

Vector projection technique is introduced for con-
strained optimization (see, e.g., [11]). It is an in-
direct parameter projection technique. It has been
widely used in the adaptive parameter estimation
and adaptive control (see e.g., [4, 16, 5]).

Consider a convex and compact set K c R“ and its
Minkowski function *K.  Given a positive definite
scaling matrix Q, we first define the scaled projec-
tion of a vector v c Rn at a point z c R“ on the
contingent cone TK(z) as follows:

{

if z c fnt(K) or v c TK. (x);
ng(z, v) = : ifv GQ-l~Kr(z);

VTQWOWO otherwise.
(9)

where r = ~K(Z)  and

W. = argnmx{vTQwlw  c TKr(Z),  l]wll~ = 1}.

We have the following thcmcm.

Theorem 2.8 Given a convez  and compact set
K C R n, the pmjectaon is dejined blj (9), then we
have the Jollom”ng  assertions:
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(i) n~(~,~)  c ~K(z) {Or  aff z C K and v c R“.

(ii) 7r~(z,  v) < llf~llQ for d/X E K and v c R“.
Q

(iii) (z - Z*) TQ(n~(Z,  V) – v) < 0 for z“ 6 K ,
z~K, andu ER”.

(iv) Consider the system (1) under the above pro-
jection:

x = rrg(z,  f(z, t)); (lo)

then the set K i.s an invariant set for the pmjeded
system.

Proof Given z c K and v c R“.

(i) If z E lnt(K),  then TK(z) = R“, so &(z,v) =

v ~ TK(z); if v G TK(~), t hen  7r; (z, v) = v e
TK(z); if v c Q-lZVK.(Z) = {WI : v QW < O,VV G

TKr (z)}, then n~(z, V) =  O ~ TK(Z). We only
need to show the last case with V(Z) z 1. In fact,
m wo c TKr (z) and VTQWO a O, then ?r~ (z, u) =
(v~Qwo)tvO  ~ TKr(~).

(ii) As the inequality is satisfied trivially in the first
two cases, we only need to show the case when
n~ (z, v) = VTQWOWO. Indeed,

= IIVTQUJIIII  ~ IIVII* hLJotlc)  = IIVIIQ .

(iii) If z C lnt(K) or v G TK(Z), then n~(z, V) = V,
so (z – z*) TQ(m~(z, v) - v) = O. Now we consider
the other cases.

Notice that, for all z* e K, ss z + (z* – z) =
z c K, then z“ – z c TK(Z) by Lemma 2.1. So
if v c Q-llVK(Z), then Qv ~ NK(z), and by the
definition of normal cone,

(x – Z“)TQ(T~(Z,  V) – V) = (z” - z)T@ <0.

Next, let’s consider the remaining case:
VTQWOWO. We first show the following:

Q(v -@% v)) ~ ~K(z).

From the definitiw~  of the projection,

W. = arg max{(Q1/2v)T(Q1 /2w)l

Q1/2W c Q1/2TKr(z),  Q1/2W  = 1 }

Therefore,

VTQWoQ1/2Wo = (Q1/2,,)T(Q1/2Wo)  (Q1/2Wo)

= arg min Q~/2v _ z ,
ZEQ1/2TK(Z)

or

VTQWOWO = arg min IIV -  
‘OIIQ -

Q1/2ZOEQl/2TK(Z)

By the use of Proposition 2.4, we have

(v - VTQWOWO)TQ(Z  - VTQWOW())  <0 ( 1 1 )

for tdl z E TK(Z). On the other hand, as T’(Z) is a
COnVeX cone, SO for all U ~ TK (Z), u + VTQWI)WO ~
TK(Z);  ~ (11) imp]i-

(V - VTQWOWO)TQU

= (V–VTQWOWO)TQ(U+VTQWOWO–VTQWOWO)  <0.

Therefore, Q(u – VTQWOWO) c ~K (z) as claimed.
Again by the definition of normal cone,

(Z-Z* )TQ(@Z, V)-~)  = (Z*-Z)TQ(y-7r~(Z,  V)) <O.

(iv) As K is convex, then its Minkowski func-
tion ~K iS convex, so it iS absolutely COnthIOUS.

Now for any absolutely continuous function z(t)
that is a solution of (10) with z(O) E K, then
q(t) := ~K (z(t))  is also absolutely continuous. It is
sufficient to show z(t)  c K. Indeed, if it is not true,
then there exists T >0, such that z(T) G Rn\K;
so ~K (z(T))  >0. suppose To < T is such that

To= inf{t a O: z(t) E Rn\K}

Therefore ,  z(To)  E K as K is compact, so
*K(z(0)) S 1. Let t G (To, T) be a point on R+

where both i(t) and ~ (z(t)) exist, then there
wexists c(h) with lim~-o ~ = O such that

T(t + h) = z(t) + hi(t) + E(h).

Then

wK(~(t)  + ~+(~) + ~(~))  – 
*K(~(t))

?j(t) = hm+
h

%z(t)brg(z,  f(~! ~))=  ~(w)w = OX

N o t i c e  t h a t  ~(z(t))  C ~K. (z(t))  whfm?  r =
WK(2(t));  by the same argutlmnt as (i), wc can show
m~(z, {(x, t)) C &(%(t)). Thus,

rj(t) =  *(4MXZ, J(X, t)) s 0.
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almost  cverywhcrc  on [I_o, ~]. Thus,

~ <  ~K(~(?’))  -  ~K(~(TO))  =  ?j’(T)  -  q(TO)

/

T
= ?j(t)dt  <0,

0
which is a cent radict  ion. Therefore, K is an invari-
ant set.

Notice that in the above theorem, (iv) is not the
conclusion of (i), as we don’t assume the solutions
of (10) are unique for z(O) E K (see Proposition
2.3). In the proof of (iv), the projection property
of a vector outside K is used which is also true
if the projection (2.8) of a vector is defined onto
the exterior contingent cones instead of T’r (z) with
r > 1 (see [1, Definition 5.1. l]). (iii) is a useful
property for the adaptive control design.

It is also noticed that the right-hand side of (10) is
not necessarily continuous, even if j is continuous.
In [16], with some relaxation, the authors define
a projection which is Lipachitzian and guaranteea
the projected system to have an invariant set larger
than the parameter set.

3 Adaptive 7&-Control

3.1 Adaptive 7fw-Control Problem
and Dissipativity

In this section, we will consider the adaptive atten-
uation of disturbances for nonlinear systems with
emphasis on the application of projection tech-
niques. The uncertain nonlinear system G(O) to
be considered is governed by the following param~
terized dynamical equation:

{

x= f(~,o) +  gl(z, qw +  92(Z,0
z = h(z) + k~ (Z)UJ + k2(x)u
Y = hz(z) + k21(z)w  + k22(z)u

(12)
where O is a r-dimensional vector of unknown con-
stant parameters with O c (3 G Rr. In the adaptive
cent rol problem, we will consider the parameter-
depcndence in the following fashion:

/(Z, O) = ~~(~) + ~O,Jl(Z)
ial

r

gj(~,~)  =

9jO(x)  +  ~0i9ji(x)~  ~ =  1!2.
inl

6

It is assumed that /i, gji, h, kj E C
:= 1 kT(r)kl;;)  :(% f;O, h(0) = O, and R(z) – ~ .

all x c R“; z, w, u, z, and y are state, exogenous
disturbance, control input, regulated output, and
measured output with dimensions n, pl, W, q, and
n + pl, respectively.

The objective of the adaptive 7-&-controller  design
is to attenuate the impact z of the exogenous distur-
bance w and the error induced by the initial guess of
the parameter. The magnitudes of signals z, w and
z are measured by their Z2-norms. The adaptive
controllers to be sought have the following form.

K :
{

P =  44P, ?/, ~)
u = K(p)y (13)

where p E Rr is the estimation of the real param-
eter 0, I#J G Co, and P = 4(P, Y, U) is the parameter
update law. For fixed p, u = ~(p)y is a 1/0 map
from y to u; it is taken as a (possibly modified) gain-
scheduled controller in the sequel. An adaptive?&
control system is illustrated in Figure 1. The pre
ciae statement of the adaptive control problem is
given next.

.~.

I/
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1
1
1
11
:
1
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Figure 1: Adaptive ‘H~-Control  System

Definition 3.1 (Adaptive 7&-Control  pro~
lem)  Suppose e > 0 is given. The adaptive &-
control design i.~ to seek a controller (1,9)  such that
the reswlting  closed loop s~stem with z(O) = O sat-

i.@e3

I

T JT
llz(0112 ~t < lllfJ(t)112dt+(f~((J)  -e)TQ(P(o)-e)

o 0
(14)
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fora/l T c R+, w c ZZIO,OO),  P(0) c El, and O E e.

The performance can be interpreted as the attenu-
ation of exogenous disturbance and the error of the
initial parameter guess. Note that in this statement
the initial state is assumed to be at the origin. If
the initial state is unknown, the performance can
be modified accordingly.

In the following, we consider full-information feed-
back, in which csse both x and w are available to
the control input u. Moreover, we make the follow-
ing assumptions to simplify the process.

Assumption 3.2 Consider the system  (12).

[Al] The panameter  set 0 w wnvez and wmpact,
and O e Int(El).

[1/A2]I/=  ; .

/A3/ kI(X) = O and k;(x)  [ h(z) kz(z)  ] =
[ 0  l]~oraUz~Rn.

Assumption [A2] just restates the full information
problem. [A3] is a standard assumption in the?&
control problem [3, 8] in most of the derivationa in
the following.

Remark 3.3 It wifl be seen that for  the parameter-
dependent s@em (12) with above assumptions, if
the multiplier 91 (z, O) of the disturbance w w in-
dependent of 0, then onlg the state information, in
stead of full information, is needed to wnstruct the
adaptive ?&-control law.

It is known that if the parameter 8 is known, then
the &.-control  problem has a state-feedback o
lution if there exists a non-negative function V :
R“ x El~R+ which is positive definite with respect
to z sllch that the following parameter dependent
Hamilton-Jacobi inequality is satisfied for all 0 c El:

g(x,o)f(z,q + ;g(z, q(gl(x,tqg:(z,e)+

ald the parameter-dependent ?&-controller  is

1
292(W~=-- g(x, e). (16)

Moreover, the closed loop systmn  with the above
controller is dissipative with respect to the supply
rate IIw][2  - 11.z112,  and the function V is a storage
function for the closed-loop system satisfying the
dissipation inequality:

V(z, e) < IIW112 – 11%112  . (17)

However, if the parameter is unknown before the
system is in operation, we need to design an adap
tive mechanism to estimate the parameter on-line
and use the estimated parameter to adjust the nec-
essary control action; in which case, the controller

u = @(z,  w,p)

is used instead, where @ is the state feedback (or
its modification) defined in (16), p is an estimation
of 8, and its update law has the following general
form:

P =  $(P, %WU)
To guarantee the ‘l&-performance  (14) for the
closed system, we need to show that the adaptive
(closed-loop) system is dissipative with respect to
the supply rate IIw[[2 – IIz112; it is enough to find a
storage function We : Rn x Rr~R+ for each O G e,
such that the following dissipation inequality is sat-
isfied:

WU(z(Z’),p(T))  - W’O(z(0),p(O))

Js O=(llw(t)r  –  lp(q112)dt.
Its differential version is satisfied if W is differen-
tiable:

g(x,P)(f  (x)e)  + 91(~,f0w + 92(% W(LUP))

+ awe
-#z,p)d(p,z,w,lb(z, w,p))  < IIW112 - 11%112.

(18)
for each O c e and (z, P) c R’ x Rr. Next, we
will explicitly construct storage functions such that
(18) is satisfied. From the discussion in Section 2.2,
suppose the Hamilton-Jacobi inequality (3. 1) has a
solution V(z, 0), a possible choice for the storage
function is V(x, p) where the unknown parameter O
is replaced by its estimation p. However, it does not
reflect the parameter estimation nature for the up
date law. On the other hand, the parameter enters
the system in an afflnc  fashion. Therefore, a rnean-
ingfu] choice of the storage function of the adap
tivc coxltrol  system is the onc with an w!ditional
quadratic ptmm:

We(z, p) = V(z,  p) + (p - fI)TQ(p -0) (1!3)
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Note that this idea was first introduced to construct
Lyapunov functions for stable adaptive systems
[13], and haa been used in many adaptive control
problems [6, 16, 23, 7]. For the sake of simplicity,
we will assume that the function V : Rn x El~R+
satisfying the the above Hamilton-Jacobi inequality
be continuously differentiable with respect to both
arguments. Detailed solutions to the adaptive ?&-
control problem with full information feedback in
different cases when V is independent of the pa-
rameter is presented next.

3.2 Solutions to Adaptive 7-t~-
Control Problem

In this section, we mainly consider the case
where there exists a positive definite function V :
R“~R+ which is independent of O such that it sat-
isfies the Hamilton-Jacobi inequality (3.1), i.e.,

–92(% 6)9;(%  0))g(z) + N(z)h(z) <0. (20)

for all 8 c e.
Let W : R“ x E14R+ be a positive definite function
defined as

W(z,p) = v(z) + (p - e)*Q(p - 8). (21)

where Q is the positive definite matrix defined in
the definition. Take W as a storage function candi-
date of the adaptive 7&-control  system. Then

Yiqz,p)  = v(z) + 2(p – e)=Qp

#(z)(f(z,  o)+gl(~,@)~+gQ(~,0)+2  (@)TQ$

= giW(LP) + 91(~>P)~ + 92(% P)~)+

+ ~{~(z)(oi  – Pi)(.fi(~)  + 91i(~)~ + 92i(~)u)}
ial

+2(p  – O)TQp

Notice that if p c 0, then from the assumption
(3.2), then

g(z) f(2!, p) < -( +g(z)(g,(%p)gr(  z,p)+

–!72(~i P).d(% P)) g(x) + h~(z)h(z))

Replace the above incqllality  and use the compk-
tion of square, one has

WLP) s l@(t)l[2 – lIz(t)112  +

lT
+ u(t) + ~g2 (X, p) g(x)) 2 +

2
w(t) – ~ ~19=(z,  P)g(20 +2(p-t7)TQ(j-@(z,  w,u)),

. .
(22)

where @ : R* x RP1 x RP2 -+Rr  is defined as

I g(d(.m + 911(~)~ + 921(Z)U)

*(Z, w, u) = ;Q-l 74)(f2(~)  + 912(~)w  + 922(~)4

1
.

1 %(z)(.fr(z)  + 91~(z)w  +92r(~)u)  J
(23)

From (22), one has that if p G (3 and u =
– 19~(%  P) ~(z),  then

ti(Z,p) < llw(t)112–llz(t)  112+2  (p-O) ~Q(@I@, W,U)),
(24)

Now integrate both sides of (24) from O to T and
notice lV(z(T), p(T))  a O and z(O) = O, we have

J
T

llz(t)112 dt <
/

T llw(t)112  dt+(p(0)-O)TQ(p(O)  -8)+
o 0

J+2 ~T(p(t) - O) TQ@(t)  - @(z(t),  w(t), u(t)))dt

I
T

< llw(t)112  dt + (p(0) - t?)~Q(p(0)  - 0)
o

J+ 2  ‘(p(t) - @)TQ@(t) - @(z(t),  w(t), u(t)))dt.
o

(25)

Therefore, if we can find a parameter update law
for p such that

J~T(p(t) - O) TQ($(t) - @(Z(t), W(t), u(t)))dt <0

and
p(t) c 0, W c R+,

then the adaptive ?&-contro]  problem is solved.
Fortunately, we can use the projection techniques
developed in Section 3 to achieve the above require-
ments.

Theorem 3.4 (Adaptive ?&-Control  with
Vector Projection) Cons ider  the pammeter-
dependent system (12). Suppose there mists  a non-
negative funct;on  V : R“ eR+ w~h that for each
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8 G (3, (3.2)  is satisjied.  Then .qiven  a positive  def-
inite matriz  Q c R’ x‘, the adaptive ?&-contmf
pmblern has a solution. And an adaptive control
law is given by

{

~9m!P)?g(@)“ = m:(p,qz,w, —4P (26)
u = -}g;(z,P)*(z)

where * is defined by (29) and & is the scaled
vector  projection with respect to the set El.

Proof Consider the adaptive control law (26).
I!Yom Theorem 2.8, one has that the given paranw
ter update law:

p = 77:(P,  Q(Z,W,U)),

insures p(t) ~ e and

(p - O)TQ@ - @(z, w,u))

= (p - O) TQ(@p, @(Z, ?. U,U)) - @(Z, W, U)) ~ O,

which implies

/
‘(p(t) - O)~Q@(t) - @(z(t), w(t), u(t)))dt  <0

0

for all T G R+. Now apply the adaptive control
law (26), we have the relation (3.2), which implies

Proof Consider the adaptive control law (27).
Suppose p(t) for t c [0, cm) is generated by the re-
sulting update law:

i = @(z, w,u),

and
p(t) = l-Ig(7r(t));

then from Theorem 2.6, one h= p(t) c El and for
all TG R+,

/
O=(p(t) - O)TQ@(t) - @(z(t),  w(~), U(t)))dt

J
T

= (p(t) – O)~Q@(t)  – ~(t))dt  <0.
0

Now apply the adaptive control law (27), we have
the relation (3.2), which implies

JT

JT
Ilz(t)llz  d < l/w(t)  112dt+(p(0)-O)TQ(p(0)  -/l),

o 0

for all T c R+.

Remark 3.6 It is interesting to compare Thw-
rem 9.5 w“th  the sufficient wndition  result for
the minimaz  adaptive problem in [2j. As in the
above theorem, the suficient condition in /2/ jor
the minimaz adaptive control problem to have so-1T Ilz(t)ll% < J

T 
llw(t)112dt+(p(0)  -O)TQ(p(c))-e),  / ~.

o 0 u ton is that there ezists a non-negative function

for all T E R+.

The direct parameter projection method can be
also applied.

Theorem 3.5 (Adaptive ‘H~-Control  with
Direct Parameter Projection) Consider the
parameter-dependent s~stem  (12). Suppose there
ezists a non-negative function V : Rn~R+  such
that for each O E (3, (3.2) is satisfied. Then the
adaptive ?&-control problem has a solution with a
positive dejinite  matrix Q c R“”. And an adaptive
control law is given by

{

k= ~9;(~lP)m*( Z, W,–4 ‘VT (x))

P = rrg(7r) (27)

~9:(~!P)*(@W=-2

where @ is defined by (IV) and 11~ is the scaled
direct parameter projection with respect to the set
e.

V : R“4R+ independent of the pammeter such
that the Hamilton-Jawbi  inequality (3.2) is satis-
jied; and the control action u ti also obtained by the
pammeter  projection. However, the implications oj
the function V(z) in the two papers  are different. Zn
this paper, V(z) is just the stomge  function of the
pammeterized  ?im -control system, but not the re-
sulting adaptive ?/m -control system, In /2/, V(x) is
the stomge  function of the resulting minimax  adap-
tive control system, i.e., an upper bound of the value
junction. The adaptive controller in this paper is
simpler than that given in [2]. However, the use and
implications oj parameter projectiori  in [2] and thti
paper are diflerent. The scaling matriz  of parame-
ter projection in [2] is dependent on state, while the
projection in this paper is constant in this sense.

In conclllsiou,  it is noted that the direct parameter
projection guarantees that the adaptive coutrol  law
(27) is conti]luous,  while the adaptive control  law
(26) using vector projccticm  is not. The Iattcr con-
trol law can bc rnadc continuous lwing the vector
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projection defined by (0) under some smoothness
assumption,
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